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Reaction dynamics on bifurcating potential energy surfaces 
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Classical trajectories were run on a local fit to the bifurcating transition region 
of the Valtazanos and Ruedenberg ab initio potential energy surface for the 
cyclopropylidene to allene reaction, and also on several variations of this 
local surface. The trajectory results were analyzed to determine the outcome 
as a function of initial conditions, and several plots of  these are presented. 
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1. Introduction 

Recently, a potential energy surface exhibiting a bifurcating transition region has 
been found in the Valtazanos and Ruedenberg ab initio calculations for the ring 
opening reaction of cyclopropylidene to allene [1]. A bifurcating region, which 
has been considered in the literature [2-6], is not the same as the accidental 
occurrence of a bifurcating transition state [7]. The finding of this ab initio surface 
has prompted us to undertake the present study of the characteristic dynamic 
behavior expected on these types of  surfaces. The calculations were done using 
classical trajectory analysis [8], as detailed in Sect. 2, and the results are presented 
in Sect. 3. 

2. Calculations 

The possible arrangements,  denoted by A, B, and C for the cyclopropylidene- 
allene reaction, are defined in Fig. 1. Notice that the two forms of allene, while 
differing only in the 180 ~ difference in orientation of one of  the CHz groups 
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relative to the other and therefore being quantum mechanically indistinguishable, 
can indeed be distinguished in a classical analysis. The surfaces (Figs. 2-5) are 
all obtained from the Valtazanos and Ruedenberg ab initio surface (Figs. 12 and 
13 in [1]), by a local fit in the case of Surface 1 (Fig. 2), and by varying the 
surface parameters for Surfaces 3 and 4 (Figs. 4-5). For the second surface, we 
have modified Surface 1 by the addition of a small gaussian centered on the left 
saddle point to break the symmetry of these surfaces (Fig. 3). This case would 
then involve a bifurcation to products which are indeed distinguishable, although 
the surface is purely formal and does not correspond to a known physical reaction. 

Valtazanos and Ruedenberg calculated their ab initio surface using MCSCF 
theory, and optimizing all but two coordinates, denoted by x and y, defined 
below. They fit their surface in the transition region with the following local 
power series expansion: 

V = A x  - B ( x  + C l y 2 ) ( x  + C2y 2) (1) 
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Fig. 2. The local fit to the Valtazanos and Ruedenberg surface [ 1 ]. Dashed lines represent equipotentials 
lying above the saddle point energy and solid lines those lying below it. The dashed equipotential lines 
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Fig. 3. Dashed lines represent equipotentials lying above the right saddle point  energy and solid lines 
those lying below it. Contour intervals are the same as in Fig. 2 
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Fig. 4. Dashed lines represent equipotentials lying above the saddle point energy and solid lines those 
lying below it. The dashed equipotential line is at -0.05 H while the solid lines are at -2.0 H and 
every -2.0 H thereafter 
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Fig. 5. Dashed lines represent equipotentials lying above the saddle point energy and solid lines those 
lying below it. The dashed equipotential lines are at 0.000383 H, while the solid lines are at 0.0003 H, 
0.0 H and every -0.0003 H thereafter 
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where (i) x is the C-C-C angle, ranging from about 1.05 radians (60 ~ for 
cyclopropylidene to 7r radians for allene; (ii) y is one half  the difference between 
the dihedral angles the CH2 groups make with the plane of the three carbon 
atoms, ranging from 0 radians for cyclopropylidene to ~ / 4  radians for allene; 
(iii) The surface is normalized such that V = 0 at the valley ridge inflection Point, 
VRI, defined to be the point at which both x and y components of  the gradient 
vanish; (iv) The coordinates are displaced so that the VRI point occurs at (0, 0). 

This expansion, which corresponds to the cyclopropylidene-aUene transition 
region for the specific set of  parameters A, B, C~, C2 given in Table 1, will in 
fact represent such a bifurcating potential energy surface for any set of  parameters 
such that 

B > 0 ,  C~+ C2>0.  (2) 

These characteristics assure that a cross section of the surface in the x direction 
for values of  x < 0 (below the VRI point) will be a "valley" about the x axis, 
while such a cross section for x > 0 will be a "ridge".  

The surface defined by a given set of parameters can be further characterized in 
terms of its critical points. For A <  0 there is one critical point at (A/2B, 0), with 

A 2 
V : -  

4B 

When A < 0 this is a saddle point which occurs ahead of (below) the VRI point. 
I f  A = 0 this is a higher order critical point which coincides with the VRI point. 
Dynamics on such surfaces are not investigated here since they do not exhibit a 
bifurcating transition region in the entrance channel. 

I f  A > 0 however, there are three critical points on the surface, a local maximum 
on the x axis at (A/2B, 0) where 

A 2 
V : -  

4B 

and two saddle points located symmetrically about the x axis at 

( -2ACIC  , • C2)/ 

Table 1. Surface expansion parameters ~ 

A B C1 C2 
Surface Fig. (H/radian) (H/radian 2) (radian -1) (radian -1) 

1 2 0.04330895 1.21976773 0.95098511 -0.01970982 
3 4 0.04331 1.2198 0.9510 0.8 
4 5 0.04331 1.2198 0.9510 -0.8 

The parameters are defined in Eq. (1). The energy unit is the Hartree, symbolized by H 
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All the surfaces in this paper are examples of  this kind of surface. Indeed, the 
surfaces other than Surface 1 were arrived at by modifying the parameters so as 
to alter the topology, characterized by the relative positions and energies of its 
critical points, with the least possible alteration of  the original energy relation- 
ships. For convenience the parameters used in the various surfaces are summarized 
in Table 1. The locations and energies of  critical points are given in Table 2. 

In addition, we have introduced an asymmetric surface (Fig. 3) which is a 
modification of Surface 1 by the addition of  the gaussian 

2Ag exp [ - a (  x - Xo) 2 -  b(y  - yo) 2] 

Table 2). The parameters (a, b, Ag) have the values (2000 radian -2, 3.562 radian -2, 
0.0004 H) chosen arbitrarily but such that the original Surface 1 was not distorted 
except in the left hand transition region. 

Although both coordinates are angles, we found it convenient to regard them as 
dimensionless displacements in a cartesian kinetic energy expression, 

1 - 2  1 . 2  
T = fl~2 + f l y )  

This is valid since the analysis requires a very small region of  the surface over 
which the moments of inertia would be essentially constant. The motion in the 
x direction, the ring opening, is thus referred to formally as a translational motion. 
Correspondingly we refer to the motion in the y direction, the CH2 twist, as 
being vibrational since the cross sectional well for x < 0 is quartic. 

The initial conditions for each trajectory were selected according to energy criteria 
as displayed graphically in Fig. 6. We defined the translational potential energy 
arbitrarily as the value of  the lowest point within the well for a given value of x 
(which always lies on the x axis). Then the difference between this translational 
potential energy and the actual potential energy was defined to be the vibrational 
potential energy. Eth w a s  defined to be the energy difference between the transla- 
tional potential (potential at the bottom of  the well) of the initial value of  x, 

Table 2. Critical points 

Local m a x i m u m  Saddle point 

x y Value x y Value 
Surface Fig. (radian) (radian) (H) (radian) (radian) (H) 

1 2 0.017753 0.0 0.00038443 0.0014126 • 0.000030589 
3 4 0.017753 0.0 0.00038444 -2.36944 • -0.051310 
4 5 0.017753 0.0 0.00038444 0.017621 • 0.00038158 
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Fig. 6. Energy levels for the choice of translational and vibrational energies 

chosen more or less arbitrarily, and the minimum energy for reaction to occur. 
For most of the surfaces vibrational energy had to be added for reaction to occur, 
since trajectories did not follow a minimum energy path. The trajectory results 
on each surface were analyzed both at this Eth and at another somewhat higher 
translational energy (within 2Eai~ of Eth). 

For each value of the translational energy, the vibrational energy and phase were 
scanned in the following way. The difference between the local maximum and 
the saddle point was defined to be Eain, and the vibrational energy was varied 
from zero to twice Edin. To scan the vibrational phase at each vibrational energy, 
we calculated the exact turning points from the potential energy surface at the 
specified initial value of x. This turning point was then taken as the amplitude 
of a sinusoidal oscillation of position. For each phase, given in degrees in the 
plots in Figs. 7-14, the corresponding position was computed which in turn 
yielded the vibrational potential energy, that is, the difference between the 
potential energy at that point and that of the bottom of the well. This value was 
subtracted from the specified vibrational energy and the result interpreted as 
vibrational kinetic energy, which provided the magnitude of the initial momentum 
in the y direction. The sign was derived from the assumed sinusoidal motion, 
guaranteeing that a 360 ~ scan will sample the entire phase space. However, since 
the well was actually not quadratic but has a quartic term, this method of  sampling 
did not quite distribute the trajectories evenly in phase space, but did guarantee 
that the entire phase space would be covered. The small anharmonicity would 
not significantly alter our results and at most would only slightly alter minor 
details of the appearance of our plots. 

Thus each trajectory is specified by three parameters, translational energy, vibra- 
tional energy, and vibrational phase. The specified translational energy is conver- 
ted directly into momentum in the positive x direction. For each value of the 
translational energy (two per surface) we scan vibrational energy from zero to 
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Fig. 7. Variation of reaction products with initial vibrational energy and phase 

twice Ediff, and for each vibrational energy w e  scan the entire range o f  vibrational 
phase ,  0 - 3 6 0  ~ W e  used m o m e n t s  of  inertia o f  Ix = mcr2c = 153 615me bohr  2 and 
Iy = 4mnr2H = 29 826me bohr 2 for the mot ions  in the x and y coordinates ,  respec-  
tively�9 W e  e m p h a s i z e  that these  are only  es t imates  s ince the internal dynamics  
of the C3H4 m o l e c u l e  w o u l d  need 18 dynamica l  degrees  o f  f reedom in an accurate 
treatment instead o f  2. 
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Fig. 9. Variation of reaction products with initial vibrational energy and phase 

For each surface, one plot of results is provided for each of two values of the 
translational energy. Each plot covers the range of vibrational energies and 
vibrational phase. The plotted points represent boundaries between regions where 
the initial conditions lead to different products. The regions themselves are labeled 
according to the following convention (see also Fig. 1): A is cyclopropylidene, 
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Fig. 11. Variation of  reaction products with initial vibrational energy and phase 

that is, no reaction occurred in these conditions; B is B allene (Fig. 1); C is C 
allene (Fig. 1). These plots were generated by scanning binary data files created 
by the integration program, and then edited for labels, titles, etc. using the UNIX 
system ged interactive graphics editor [9]. 
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Fig. 12. Variation of  reaction products with initial vibrational energy and phase 
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Fig. 13. Variation of reaction products with initial vibrational energy and phase 

On Surface 1 (Fig. 2) translational energies of  0.326627 H (Fig. 7) and 0.326769 H 
(Fig. 8) were used. In these plots we note that first, no reaction occurs unless a 
certain amount  of  vibrational energy is present. This can be understood from the 
topography of  the surface; if the energy is purely translational and does not 
exceed the local maximum on the x axis then no reaction can possibly occur. If, 
however, there is vibrational energy then the displacements in the y direction 
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toward the saddle points would present lower barriers to reaction. Notice also 
that when sufficient vibrational energy is present, all trajectories lead to reaction. 
The products always occur in equal amounts, as they must by symmetry. The 
boundaries between B and C occur near the maxima of  the sinusoid. This indicates 
that at lower energies the system necessarily passes through one saddle point or 
the other and subsequently is channeled into the corresponding product. This 
boundary does not occur exactly at the maximum, however, indicating that on 
this surface there is some crossover as the vibrational energy is increased, and 
the final result is no longer as definitely determined by which saddle point the 
system enters. 

In comparing Figs. 7 and 8 we see that there is little structural difference with 
the latter displaced to lower vibrational energies and with lower amplitude to 
the sinusoidal reaction boundary. This indicates both that the reaction is enhanced 
by increasing the translational energy and that the vibrational energy then becomes 
less important. Presumably if the translational energy were increased still further 
a point would be reached where the dependence on vibrational energy would 
disappear. 

On Surface 1 with a gaussian, Fig. 3 shows what happens when the symmetry is 
disturbed by adding a small gaussian distortion to the left saddle point (corre- 
sponding to C) of  Surface 1 (Fig. 2). This surface was analyzed at translational 
energies of  0.3268 H (Fig. 9) and 0.327 H (Fig. 10). The most notable difference 
from the symmetric case is of  course that the products no longer occur in equal 
amounts, but that C (corresponding to the saddle point with the gaussian) is 
inhibited relative to B. This is particularly true near the threshold, as expected, 
and begins to disappear as the energy (translational or vibrational) is increased, 
again demonstrating the decreasing importance of surface details in the transi- 
tion region as energies are increased. Notice again that both vibrational and 
translational energies enhance the reaction in this case. 

Surface 3 (Fig. 4) has the asymptotic curvature inflected downward in contrast 
to Surface 1. This surface was run at 11.0568 H (Fig. 11) and 11.1 H (Fig. 12). 
We notice at once that the boundary between B and C now rises almost exactly 
from the maximum of  the sinusoid. This is to be expected, since it is clear from 
the surface that the connection between the saddle point the system passes through 
and the product  state attained must be more direct. The saddle points of  Surface 
3, being more widely separated and with a larger local maximum between them, 
must exert a great deal of control over the final destination of the trajectories 
which pass through them. Again, in comparing these two plots, we find 
translational as well as vibrational enhancement. 

Surface 4 (Fig. 5) has the same degree of  curvature in the product channels as 
Surface 3, but with the same asymptotic direction of  curvature as Surface 1 (Fig. 
2). Notice that the scale of  this plot is much smaller than the others. The channels 
are not nearly fiat, as may appear, but comparable with those in Surface 3. The 
flat appearance arises from the fact that the saddle points have been compressed 
together into a very narrow region and now differ from the local maximum only 
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very slightly in energy. This surface was analyzed at 0.3269866 H (Fig. 13) and 
0.326988 H (Fig. 14). The most notable difference is that the B-C boundary has 
moved nearly to the minimum of  the sinusoid. This indicates that when conditions 
are suitable for the system to pass through one of the saddle points it is almost 
equally likely to go to either product. That is, the particular saddle point has 
much less control over the final result obtained. This must arise directly from 
the flatness of  the surface about the transition region. In the transition region a 
trajectory is so close to the x axis that after passing through either saddle point 
it is still traveling along the ridge (x > 0) and can fall off into either product 
channel. Again both translational and vibrational enhancements are observed. 

3. Conclusion 

The main conclusion which arises from consideration of these results is that in 
general the behavior is in reasonable accord with expectations based upon 
consideration of  the characteristics of  the surfaces involved. The compactness of 
the product regions clearly indicates that chaos is not occurring. Indeed the 
simple two phase diagram present at high vibrational energy is especially regular. 
This is perhaps unexpected since the strong coupling of "translational" and 
"vibrational" motion might at least lead to a few distinct regions of different 
product formation. 

All of the surfaces show a characteristic sinusoidal boundary between reactive 
and nonreactive regions. As discussed previously the amplitude of this sinusoid 
and its relation to the vertical boundary between the two product states correlate 
quite closely with the degree to which the particular saddle point the system 
passes through exerts control over which product state is finally attained. The 
results of the dynamical analysis on the gaussian modified surface indicate that 
even such a slightly asymmetrical surface would lead to preferential formation 
of one product  over another under certain conditions. For example, at the lower 
translational energy in Fig. 9, at low vibrational energy only reactant A and 
product B appear. This point, applied to the question of reaction stereospecificity, 
was the original motivation of Valtazanos and Ruedenberg. 

Finally it should be noted that we have referred to these surfaces as bifurcating 
surfaces since a quantum wavefunction would bifurcate on such a surface. In 
classical trajectory analysis, the totality of the trajectories sampling phase space 
models the actual bifurcation which would occur in such a quantum mechanical 
analysis. It might be an interesting problem to implement quantum dynamics, 
but it is not apparent that any different result could be expected, other than the 
obvious loss of some of the quantum mechanically undefined features we 
observed. Perhaps more interesting would be to incorporate all the internal degrees 
of  freedom in the C3H4 system and analyze the dynamics on the full PES rather 
than a local fit to the transition region. 
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